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Abstract

Let L be a finite geonietric lattice of rank r and for
V .

I = 0, 1, ..., r, let W~~- denote the number of elements of L with

rank 1. For 3. < k  < r  - 2, we have

+ + •.. + W~ < W r k  + ••• + W~~~ + W 1
/ , (~~

) — 
~~

•
•~~~ ~~, < .~ ~ + y. ~with equality if and only if the lattice L is modular . We give

two further results concerning matchings of lattice elements of rank

< k  into those of rank >‘r - k, and observe that a middle term can

be interpolated in the ab~v’e inequality .
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1. Introduction

For a finite geometric lattice L of rank r, we denote the

number of lattice elements of rank i by W1 
= w~(L). W0, 

W1, • ••
~~ 

W~

are the Whitney numbers of the second kind . Of course, = = 1.

There are several interesting conjectures concerning the Whitney

numbers of geometric latticcs, Foremost among these is the unimodality

conjecture of G.-.C. Rota which asserts that W ,~ > min[Wl,Wk~ 
whenever

1. < j < Ic. This is known to be true for partition lattices [9), [111.

Another conjecture asserts that Wk < W r_k whenever k in a

geometric lattice of rank r. This would imply that W0 <W1 < W 2 < ...
(by applying the above conjecture to truncations of the lattice). All

of these conjectures are valid for geometric lattices with at most

eight points (2) and “perfect matroid designs” [13).

In (ii , Kelly and Basterfield proved that W1 <W r_i for geometric

lattices of rank r. Another proof is given by C. Greene (7) who added

the result that = Wr_1 holds if and only if the lattice is modular

and also gave several results concerning the matching of the points

into the copoints. A third proof , by entirely different techniques,

is given by Greene in (8).

In this note we prove that + + •.. + W~ < W r_k + •• •  + W~_2+ Wr_i

for geometric lattices of rank r with equality holding for some k,

1. <k < r-2, if and only if the lattice is modular. This provides some 0

Justification for the empirical observation that geometric lattices are

“top heavy” and is not unexpect ed in view of Crapo and Rota ’s assertion [ Ii]

~~ *Ih~iL ~I

~~~~~~
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that “Roughly speaking.., everything which ‘happens ’ in a geometric

lattice also ‘happens ’ somewhere at the top of the lattice.”

Our proof appeals to elementary linear algebra and t(óbius inversion.

The inequa] ity is proved by showing that a certain set of Wr_k + + W

vectors spans a (w0 + ... + Wk)_dimensional subspace of a vector space

V(L) introduced in Section 3. These techniques also allow easy

derivations of the generalizations of Greene’s results concerning

matchings of points to copointn (Theorems 2 and 3 of Section 5). in

Theorem 14 of Section 5, we give a further result to indicate possible

variations of the methods. A corollary of this result is used as a

lezmna in a further paper [ 6 )  where the authors give lower bounds for

in terms of W1 and the rank r of a. geometric lattice.

2. Preliminaries

Definitions and results required in the sequel are swnmar1~ed

in this section. A detailed treatment of’ geometric lattices may be

found in [3] or (14).

A g~cinetric lattice is a lattice L of finite height in which

x 
~ 
y (x covers y) if and only if x = y V p for some point

— 

p y. Here a point is a lattice element covering the minimum element

0 of L. The maximum element of a lattice L is denoted by 1, and

a ç~point is a lattice element covered by 1.

The rank function p of a geometric lattice L is uniquely

determined by
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o(O) 0 and

p(x) p(y) + 1 whenever x •>  y,

and satisfies the seinimodular law

0(x) + p(y) > p(x V y) + p(x Ay) . (i)

A geometric lattice is modular when p(x) + p(y) = p(x A y) + o(x V y)

for ft1l x,y E L .  The rank of L is the integer r =

For a. < b  in a geometric lattice, the interval

(a,b) = fx E L : a <x <b ) Is also a geometric lattice. When

a < x  < b  in a geometric lattice, there always exist modular complements

of x in the interval [a,b), i.e., lattice elements y such that

x A y = a, x V y = b, and p(x) + p(y) = p(a) + p(b).

The M~bius function (12) of a finite lattice L is the integer-

valued function ij . = on L X L with the properties

u(x,y) = 0 unless x <y,

i(x ,x) = 1, and

~ ~(x,z) = ~~ ~(z ,y) = 0 whenever x <y .
x < z < y x < z < y

From these propert.~es follows the principle of M~bius inversion:

Given functions f ,g from L into an additive abelian group,

f(x) = 

~i: 
g(y) for al]. x implies g(x) = ~~ ~.i(x,y) t(y),

Y?X

and [‘(x) ~ g(y) implies g(x) = p~(y,x) f(y) .

We shall require the fact (12, Thm. 3) that for a geometric lattice,

i&(x,y) ~( 0 for x <y .

-~~~~~ - - -~~~~~~~~~~~~~~~ - ~~~- .



In [5, Lenma 2.2), Dilworth showed that in a modular geometric

lattice, W = W for all k.Ic r-k

3. A Vector Space

Given a finite lattice L, we introduce the free vector space

v(L) (Dyer the rationals Q) generated by the lattice elements.

Formal ly, we may take V(L) to be the set of aU mappings from L

into Q, with the usual addition and scalar multiplication. For each

lattice element x, let I~ E V(L) denote the characteristic 
function

of the singleton subset (xli, i.e.,

~~~~~~~ if y = x
— L0 otherwise

Clearly, the vectors Ci,~ : x E LII form a basis for V(L) .

For each x E L, let J,~ and K
~ 

denote, respectively, the

characteristic functions of the subsets fy E L : y V x = 1) and

(y E L : y < x) . That is,

~~ I
1

and K =  ~i: ~~~~~~~~~~~

y :y\~c = l  y : y < X

The linear relations between the three sets of vectors (I,~1, CJ,~1,

are given in the following lemna in terms of the MGbius function

~ of the lattice L:

Lemna l. Let L be a finite lattice. Then for each x E L, the

foUoving equations hold in V(L) :

____________________________ ____________________________ _________ -
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(1) 1~ = ~ ~(y,x) K~.
y:y~ c

(ii) j
~ 

= ~ ~.L (y, l) K~,.
y :y>x

(iii) 
~
(x,l)K

~ 
= ~ ~.&(x,y) J~y•
y:y>x

(iv) if p(a,l) / 0 for all a E L, then

)‘ A(x,y) J
1

where

X(x ,y) = ~~ ~(a,X~~L(a~
5
y)

a:a’CXAy

Proofs. For (i), apply M~bius inversion to the definition of K
~
.

For (ii), observe that

~~~

‘ 

~(y,1) Ic1 
= ~ p.(y,i) 

~
y:y~’x y:y)x z:z~ r

= 
~~ ~ ~~~~~~ 1~ =

z y:PXVZ

since

V , ‘~ 
r]. if x V z = 1

L $L~y,l~ = 

~0 otherwise
y:1~ y>x~~

Applying M~bius inversion to (ii), we arrive at (iii).

Asatsaing u.(a,1) is never zero, (i) and (iii) give

— —~~~ - —- -, r—,— t -  £.swr - - - - -----—— —~
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1 ~ ii (a,x) K = 

~~ 
~~ ii-(a ,y) = ~ A(x ,y) J .

a: a<~c a: ac~c y :y>a y

Remark. With x = 0 in Lemma i(iii) and 0 / a E L,

ij(O,l) K0(a) = ~ ~(o,y) J (a),

0= 
~

This is one form of Weisner ’s Theorem [12, p. 371].

14. The Main Theorem

Theorem 1. For any finite geometric lattice L, the Whitney

numbers satisfy

+ W2 + • S~~ + W~ç~ < W r_k + 
~~~~~
‘ + 

~~~ 
+ Wr_i (2)

where r is the rank of’ L and 1 < k  < r - 1. If equality holds

for some Ic, 1 <Ic < r - 2, then the lattice L is modular.

Proof. Let Uk be the subspace of V(L) spanned by the vectors

fI~
:p(x) <Ic) and let T1:V(L) + be the projection associating to

each mapping L + Q of v(t) its restriction to the subset

j (x E L : p(x) < k). That is, iT is the linear mapping v(L ) + Uk

defined by

TT(r ) = (‘~ 
if p(x) < I c

X 0 other wise

—~ -i~~~r.~ .~~~ - 
~~~—~~~~~~~~~~

-j-
~~~~~~~ 

- _ _ _ _ _ _ _ _ _ _ _ _  -
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Note that if p(y) < r  - Ic, then

1T(J~) = 
~~~ 

T1(i,~) = 0,
x:x\~r=1

since x V y = 1 implies p(x) > p(1) + p(x A y) - p(y) > k by the

senimodular law (1).

For each x E L with p(x) < I c, we have from Lemma l(iv) ,

= U(~~~~) = ~ X(x,y) fl(~~) = ~ X(x ,y) T1(J~).

y y:p(y)>r-k

It follows that the W k + • • •  + W 1 + Wr vectors [TI(J ):0(y) > r -

-‘ span the subspace Uk which has dimension ÷ 
~~~~. 

+ •.. + W~ . Since

= Wr 1, the stated inequality (2) is established.

We now assume that equality holds in (2) for some Ic, 1 < I c  < r - 2.

Then, evidently, the vectors (T1(j
1
):p(y) > r - Ic) form a basis for

the subspace Uk• For x E L with p(x) = Ic +1, we have from Lemma 1(iv)

0 = iT(i~) = ~ X(x,y) TT(j )

y: p(y)>r-k

and hence X(x,y) = 0 whenever p(y) > r - k.

Now x A y = 0 would imply that

, ~ ~(0,x) i.&(O,y) ~- IA(O,1)

Thus our assumption of equality linpi lea in particular that x A y> 0

whenever p(x) = Ic + 1 and p(y) = r - Ic. The proof of Theorem ]. is

thus completed by the following lemma. 

-
~ ±~~ ~1~!’ ‘ ~~~~~~~~~~~~~~ -r .... — -- -.
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Lemma 2. Let L be a geometric lattice of rank r and

1 < Ic < r - 2. If x A y >  0 whenever p(x) = k + 1 and o(y) = r - Ic,

then the lattice L is modular.

Proof. Consider first the case Ic 1. If L is not modular,

there exist elements x,y E L with p(x) + p(y) > p(x A y) + p(x V y).

The image of a maximal chain C in {x A y,y) under the order

homomorphism z 1~ x V z is then a maximal chain in [x ,x V y) with

repeated elements, so there must exist three consecutive members

4 4 z
3 

of C with x V 4 x V z
2 = x V z

3
. We may therefore

assume without loss of generality (replace x by x V z1, y by z 3)

that p(x V y) - p(x) = 1, p(y) - p(x A y )  = 2. Let c be a modular

complement of x V y in the interval [x ,l) and let L be a

modular complement of x A y in the interval (0 ,y) . Then p(e) = r - 1,

p (L)=2 and

L A c = L A y A c = L A y A ( x V y) A c = t A y A X = 0 ,

contrary to hypothesis.

Consider now the genera]. case. The hypothesis remains unchanged

if we replace Ic by r - Ic - 1, so we shall assume k

Suppose for contradiction, that L is not modular. Then there

exists a copoint c and a line L such that L A c = 0. Choose

z > L  with p (z)=k+l and put a = z A c .  We have p(a) < k.

There are two cases.

Case 1. p(a) < I c  - 1. Let y be a modul ar complement of a in

the inte rval (O ,c]. Then p(y) > r - Ic, and

A



9

z A y  = z A c  A y  = a  A y  = 0 ,

a contradiction.

Case 2. p(a) Ic. Choose b > z with p(b) = 2k and let x

be a modular complement of z in the interval [L ,b]. Let y be

a modular complement of b in [a,i]. Then p(x) = Ic + 1,

p(y ) = r - Ic, and

x A y = x A b  A y = x A a = x A z  A c  = L A c  = 0 ,

contrary to hypothesis.

5. Further Results

Theorem 2. Let L be a finite lattice such. that ~(a,l) / 0

for all a E L. Then there exists a permutation f : L + L such that

x V f (x) = 1

for afl. x € L .

Proof. By Len7ma l(iv), ~~~ : x E L I is a basis for V(L). Hence

the matrix whose rows and columns are indexed by L, the entry in row x

and column y being

j~~~~~_ r l if x V y = 1
- 

~
‘ 0 otherwise ‘

is nonsingular . Sane term in the determinant expansion does not vanish,

i.e. for sane permutation f of L, 3~ (f(x) ) = 1 for afl. x E L.

(Note that, necessarily, t(o) = 1 and f(l ) = 0.)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
_ _

~ 
. __________________-
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Remark. The inequality of Theorem 1 is an immediate consequence

of Theorem 2 since for a geometric lattice L, f maps elements of

rank < k  injectively into elements of ~‘ank > r - k.

By applying Theorem 2 to the dual lattice L*, we have

Theorem 2*. Let L be a finite lattice such that ~(O ,a) / 0

for all a E L. Then there exists a permutation f* L + L such

that f*(0) = :1~, f*(j~•) = 0, and x A ?(x) = 0 for all x E L.

This answers affirmatively a conjecture of B. G. Kelly [101 that

the assertion of Theorem 2* holds for geometric lattices.

An example of a non-geometric lattice for which Theorems 2 and 2*

apply is the lattice of faces of a convex polytope , where ii.(E ,F) is

(1) dim(F) dim(E) for faces E < F .

Theorem 3. Let L be a finite geometric lattice of rank r and

0 < I c  < r. Then there exists an injection

g : (X E L  p (x) < k)÷ (y E L  p (y )> r - k )

such that x < g(x) for all x in the domain of g.

Proof. With the notation as in the proof of Theorem 1, we have

seen that [1T(J~) : p(y ) > r - Ic) spans the subspace U
k• ~~ ~~~~~ 

1(u ),

T1(J~) = 

z:~~y 
~(z,1) Tl’(ç)

so evidently (TT(K
~
) : p(z) > r - ~1 also spans Uk. Hence the matrix

whose rows are indexed by (x E L : p (x) < I c )  and columns by

(y E L : p(y) > r - Ic), the entry in row x and column y being



U

f ~ ... 1 if x< y
L
0 otherwise

has rank equal to the number of rows . The existence of the injection

g now follows, since some maximal square submatrix is nonsingular .

Remark. From Lemma 1 and with T = Cy E L p(y) > r - Ic),

~.i.(O,i) 10 = ~ .t(0,y) 1T(j ) = 
~ 

(
~ p~(0,y)) ~(z,l) TT(K ) .

yer z y~ z ,yET

The coefficient of ~(o,i) 1T(K1) in this sum is ~ p~0,y) =

where L’ is the k-th truncation of L, i.e. the geometric lattice

obtained by Identifying all elements of L with rank > r - k. In

particular, the coefficient of 1I(K.1) is nonzero. This remark can

be used to see that in Theorem 3, the injection g can be chosen so

that g(0) = 1 (whenever k < r).

For a geometric lattice L, let Top
k(L) 

arid Botk (L) denote ,

respectively, the sum of the top and bottom k + 1 Whitney numbers

of L, I.e.

Botk(L) = + W1 + ... +
Topk (L) = Wr + Wr_i + + 

~
1r-k’ where r = rank (L).

Theorem Ii. Let L be a finite geometric lattice of rank r and

fix a E L with p(a) <r - Ic . Then

• Topk (L) > Top~ (L) - Topk ((a ,l]) + Botk([a,1)) > Botk(L).

Proof. Applying Theorem 1 to the geometric lattice (a ,1], we

have Topk([a,1)) > Bot~ ([a,l]) and the first inequality follows.

________________ - ~~~~~. .~~ — , — ~~‘=--— -——--__ ._~~-. ______ L
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For z E L, define

~ 
i~~E v(r~).

x:xVa=z

Then whenever y > a in L,

A~~. (3)
z:a< z<~y

To prove the second inequality, it will suffice to show that the set

of vectors

S = CT1 (K~) :P( Y) > r - Ic, y ~ a) U tTT (A~) :p (z )  < p(a) + Ic, z > a)

spans the subspace Uk of v(L) . From the proof of Theorem 3,

> r - k) spans Uk, so it remains only to show that

TI(I(~) is In the span of S for y - >  a. But this follows from Eq.(3)

above and the observation that the seinimodular law (1) implies TT(A
~

) = 0

whenever p(z)  > p(a) + Ic.

With Ic = 1 and a taken to be a point, we have the

Corollary. In a finite geometric lattice of rank > 2, the number

of lines (rank 2 lattice elements) on ~ given point plus the number of

— copoirit s not on that point cannot be less than~ the total number of

points.

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - _________________
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